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Abstract

We describe the construction and characterization of a genomically recoded organism (GRO). We 

replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, 

which permitted the deletion of release factor 1 and reassignment of UAG translation function. 

This GRO exhibited improved properties for incorporation of nonstandard amino acids that expand 

the chemical diversity of proteins in vivo. The GRO also exhibited increased resistance to T7 

bacteriophage, demonstrating that new genetic codes could enable increased viral resistance.
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The conservation of the genetic code permits organisms to share beneficial traits through 

horizontal gene transfer (1) and enables the accurate expression of heterologous genes in 

nonnative organisms (2). However, the common genetic code also allows viruses to hijack 

host translation machinery (3) and compromise cell viability. Additionally, genetically 

modified organisms (GMOs) can release functional DNA into the environment (4). Virus 

resistance (5) and biosafety (6) are among today’s major unsolved problems in 

biotechnology, and no general strategy exists to create genetically isolated or virus-resistant 

organisms. Furthermore, biotechnology has been limited by the 20 amino acids of the 

canonical genetic code, which use all 64 possible triplet codons, limiting efforts to expand 

the chemical properties of proteins by means of nonstandard amino acids (NSAAs) (7, 8).

Changing the genetic code could solve these challenges and reveal new principles that 

explain how genetic information is conserved, encoded, and exchanged (fig. S1). We 

propose that genomically recoded organisms (GROs, whose codons have been reassigned to 

create an alternate genetic code) would be genetically isolated from natural organisms and 

viruses, as horizontally transferred genes would be mistranslated, producing nonfunctional 

proteins. Furthermore, GROs could provide dedicated codons to improve the purity and 

yield of NSAA-containing proteins, enabling robust and sustained incorporation of more 

than 20 amino acids as part of the genetic code.

We constructed a GRO in which all instances of the UAG codon have been removed, 

permitting the deletion of release factor 1 (RF1; terminates translation at UAG and UAA) 

and, hence, eliminating translational termination at UAG codons. This GRO allows us to 

reintroduce UAG codons, along with orthogonal translation machinery [i.e., aminoacyl–

tRNA synthetases (aaRSs) and tRNAs] (7, 9), to permit efficient and site-specific 

incorporation of NSAAs into proteins (Fig. 1). That is, UAG has been transformed from a 

nonsense codon (terminates translation) to a sense codon (incorporates amino acid of 

choice), provided the appropriate translation machinery is present. We selected UAG as our 

first target for genome-wide codon reassignment because UAG is the rarest codon in 

Escherichia coli MG1655 (321 known instances), prior studies (7, 10) demonstrated the 

feasibility of amino acid incorporation at UAG, and a rich collection of translation 

machinery capable of incorporating NSAAs has been developed for UAG (7).

We used an in vivo genome-editing approach (11), which is more efficient than de novo 

genome synthesis at exploring new genotypic landscapes and overcoming genome design 

flaws. Although a single lethal mutation can prevent transplantation of a synthetic genome 

(12), our approach allowed us to harness genetic diversity and evolution to overcome any 

potential deleterious mutations at a cost considerably less than de novo genome synthesis 

(supplementary text section B, “Time and cost”). In prior work, we used multiplex 

automated genome engineering [MAGE (13)] to remove all known UAG codons in groups 

of 10 across 32 E. coli strains (11), and conjugative assembly genome engineering [CAGE 

(11)] to consolidate these codon changes in groups of ~80 across four strains. In this work, 

we overcome technical hurdles (supplementary text) to complete the assembly of the GRO 

and describe the biological properties derived from its altered genetic code.

Lajoie et al. Page 2

Science. Author manuscript; available in PMC 2016 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The GRO [C321.ΔA, named for 321 UAG→UAA conversions and deletion of prfA (encodes 

RF1, Table 1)] and its RF1+ precursor (C321) exhibit normal prototrophy and morphology 

(fig. S2), with 60% increased doubling time compared with E. coli MG1655 (table S1). 

Genome sequencing [GenBank accession CP006698] confirmed that all 321 known UAGs 

were removed from its genome and that 355 additional mutations were acquired during 

construction (10−8 mutations per base pair per doubling over ~7340 doublings; fig. S3 and 

tables S2 to S4). Although maintaining the E. coli MG1655 genotype was not a primary goal 

of this work, future applications requiring increased genome stability could exploit 

reversible switching of mutS function (14) to reduce off-target mutagenesis. CAGE 

improved the fitness of several strains in the C321 lineage (fig. S3), implicating off-target 

mutations in the reduced fitness.

C321.ΔA exhibited improved performance compared with previous strategies for UAG 

codon reassignment (15, 16), permitting the complete reassignment of UAG from a stop 

codon to a sense codon capable of incorporating NSAAs into proteins. One previous strategy 

used a variant of release factor 2 (RF2) that exhibits enhanced UAA termination (16) and 

weak UAG termination (17). The second strategy substituted a UAA stop codon in each of 

the seven essential genes naturally terminating with UAG (table S5) and reduced ribosome 

toxicity by efficiently incorporating amino acids at the remaining 314 UAGs (15). For 

comparative purposes, we used MAGE to create strains C0.B*.ΔA::S [expresses enhanced 

RF2 variant (16)], C7.ΔA::S (UAG changed to UAA in seven essential genes), and 

C13.ΔA::S [UAG changed to UAA in seven essential genes plus six nonessential genes 

(table S5)] (Table 1). C refers to the number of codon changes, while A and B refer to prfA 
(RF1) and prfB (RF2) manipulations, respectively. In contrast to previous work (15), we 

deleted RF1 in these strains without introducing a UAG suppressor, perhaps because near-

cognate suppression is increased in E. coli MG1655 (18). Nevertheless, these strains 

exhibited a strong selective pressure to acquire UAG suppressor mutations (see below).

To assess the fitness effects of RF1 removal and UAG reassignment, we measured the 

doubling time and maximum cell density of each strain (table S1 and fig. S4). We found that 

C321 was the only strain for which RF1 removal and UAG reassignment was not deleterious 

(Fig. 2). Because we did not modify RF2 to enhance UAA termination (16), this confirms 

that RF1 is essential only for UAG translational termination and not for UAA termination or 

other essential cellular functions. By contrast, RF1 removal significantly impaired fitness for 

C0.B*.ΔA::S, and codon reassignment exacerbated this effect (Fig. 2 and fig. S5), probably 

because NSAA incorporation outcompeted the weak UAG termination activity (17) exerted 

by the RF2 variant (16). C7.ΔA::S and C13.ΔA::S also exhibited strongly impaired fitness, 

likely due to more than 300 nonessential UAG codons stalling translation in the absence of 

RF1-mediated translation at UAG codons (15); accordingly, p-acetylphenylalanine (pAcF) 

incorporation partially alleviated this effect (Fig. 2). However, not all NSAAs improved 

fitness in partially recoded strains; phosphoserine (Sep) impairs fitness in similar strains 

(19), perhaps by causing proteome-scale misfolding. Together, these results indicate that 

only the complete removal of all instances of the UAG codon overcomes these deleterious 

effects; therefore, it may be the only scalable strategy for sustained NSAA translation and 

for complete reassignment of additional codons.
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We tested the capacity of our recoded strains to efficiently incorporate NSAAs [pAcF, p-

azidophenylalanine (pAzF), or 2-naphthalalanine (NapA)] into green fluorescent protein 

(GFP) variants containing zero, one, or three UAG codons (Fig. 3 and fig. S6). In the 

presence of NSAAs, the RF1+ strains efficiently read through variants containing three 

UAGs, demonstrating that the episomal pEVOL translation system, which expresses an 

aaRS and tRNA that incorporate a NSAA at UAG codons (9), is extremely active and 

strongly outcompetes RF1. In the absence of NSAAs, the RF1− strains exhibited detectable 

amounts of near-cognate suppression (18) of a single UAG. C321.ΔA::S exhibited strong 

expression of UAG-containing GFP variants only in the presence of the correct NSAA, 

whereas C7.ΔA::S and C13.ΔA::S displayed read-through of all three UAG codons even in 

the absence of NSAAs, suggesting efficient incorporation of natural amino acids at native 

UAGs (17). Mass spectrometry indicated that C13.ΔA::S incorporated Gln, Lys, and Tyr at 

UAG codons. DNA sequencing in C7.ΔA::S and C13.ΔA::S revealed UAG suppressor 

mutations in glnV, providing direct genetic evidence of Gln suppression observed by 

Western blot (Fig. 3A) and mass spectrometry (table S13). C0.B*.ΔA::S displayed truncated 

GFP variants corresponding with UAG termination in the absence of RF1 (17) (Fig. 3A).

We directly investigated the impact of pAcF and Sep incorporation on the proteomes (Fig. 

3B) (20) of our panel of strains (Table 1) using mass spectrometry (tables S6 to S12). No 

Sep-containing peptides were observed for EcNR2, illustrating that RF1 removal is 

necessary for NSAA incorporation by the episomal phosphoserine system (21), which is an 

inefficient orthogonal translation machinery (19) (Fig. 3C and table S10). By contrast, we 

observed NSAA-containing peptides in unrecoded (C0.B*.ΔA::S) and partially recoded 

(C13.ΔA::S) strains, and not the GRO (C321.ΔA::S), which lacks UAGs in its genome (Fig. 

3, B and C, fig. S7, and tables S6 to S12). Such undesired incorporation of NSAAs (or 

natural amino acids) likely underlies the fitness impairments observed for C0.B*.ΔA::S, 

C7.ΔA::S, and C13.ΔA::S. In contrast to the other RF1−strains, C321.ΔA::S demonstrated 

equivalent fitness to its RF1+ precursor (Fig. 2) and efficiently expressed all GFP variants 

without incorporating NSAAs at unintended sites (Figs. 2 and 3 and fig. S6). Therefore, 

complete UAG removal is the only strategy that provides a devoted codon for plug-and-play 

NSAA incorporation without impairing fitness (Figs. 2 and 3).

To determine whether this GRO can obstruct viral infection, we challenged RF1− strains 

with bacteriophages T4 and T7. Viruses rely on their host to express proteins necessary for 

propagation. Because hosts with altered genetic codes would mistranslate viral proteins (3), 

recoding may provide a general mechanism for resistance to all natural viruses. Given that 

UAG codons occur rarely and only at the end of genes, we did not expect UAG reassignment 

to result in broad phage resistance. Although the absence of RF1 did not appear to affect T4 

(19 of 277 stop codons are UAG), it significantly enhanced resistance to T7 (6 of 60 stop 

codons are UAG) (Fig. 4).

RF1− hosts produced significantly smaller T7 plaques independent of host doubling time 

(Fig. 4A and fig. S8). The only exception was C0.B*.ΔA::S, which produced statistically 

equivalent plaque sizes regardless of whether RF1 was present (Fig. 4A and table S14). 

Consistent with the observation that the modified RF2 variant could weakly terminate UAG 
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[(17) and herein], our results suggest that C0.B*.ΔA::S terminates UAG codons well enough 

to support normal T7 infection.

Given that plaque area and phage fitness (doublings per hour) do not always correlate, we 

confirmed that T7 infection is inhibited in RF1− hosts by comparing T7 fitness and lysis 

time in C321 versus C321.ΔA (Fig. 4B). Phage fitness (doublings per hour) is perhaps the 

most relevant measure for assessing phage resistance because it indicates how quickly a log-

phase phage infection expands (22). We found that T7 fitness was significantly impaired in 

strains lacking RF1 (P = 0.002), and kinetic lysis curves (fig. S9) confirmed that lysis was 

significantly delayed in the absence of RF1 (P < 0.0001, Fig. 4B). Meanwhile, one-step 

growth curves (fig. S10) indicated that burst size (average number of phages produced per 

lysed cell) in RF1− hosts was also reduced by 59% (±9%), and phage packaging was 

delayed by 30% (±2%) (table S15). We hypothesize that ribosome stalling at the gene 6 (T7 

exonuclease) UAG explains the T7 fitness defect in RF1− hosts, whereas T4 may not possess 

a UAG-terminating essential gene with a similar sensitivity (supplementary text). Abolishing 

the function of additional codons could block the translation of viral proteins and prevent 

infections entirely.

Using multiplex genome editing, we removed all instances of the UAG codon and 

reassigned its function in the genome of a living cell. The resulting GRO possesses a 

devoted UAG sense codon for robust NSAA incorporation that is suitable for industrial 

protein production. GROs also establish the basis for genetic isolation and virus resistance, 

and additional recoding will help fully realize these goals—additional triplets could be 

reassigned, unnatural nucleotides could be used to produce new codons (23), and individual 

triplet codons could be split into several unique quadruplets (8, 24) that each encode their 

own NSAA. In an accompanying study (25), we show that 12 additional triplet codons may 

be amenable to removal and eventual reassignment in E. coli. However, codon usage rules 

are not fully understood, and recoded genome designs are likely to contain unknown lethal 

elements. Thus, it will be necessary to sample vast genetic landscapes, efficiently assess 

phenotypes arising from individual changes and their combinations, and rapidly iterate 

designs to change the genetic code at the genome level.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Engineering a GRO with a reassigned UAG codon
Wild-type E. coli MG1655 has 321 known UAG codons that are decoded as translation stops 

by RF1 (for UAG and UAA). (1) Remove codons: converted all known UAG codons to 

UAA, relieving dependence on RF1 for termination. (2) Eliminate natural codon function: 

abolished UAG translational termination by deleting RF1, creating a blank codon. (3) 

Expand the genetic code: introduced an orthogonal aminoacyl–tRNA synthetase (aaRS) and 

tRNA to reassign UAG as a dedicated sense codon capable of incorporating nonstandard 

amino acids (NSAAs) with new chemical properties.
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Fig. 2. Effects of UAG reassignment at natural UAG codons
Ratios of maximum cell densities (horizontal axis) and doubling times (vertical axis) were 

determined for RF1+ strains versus their corresponding RF1− strains (n = 3) in the presence 

or absence of UAG suppression. Symbol color specifies genotype: UAA is the number of 

UAG→UAA mutations, and RF2 is “WT” (wild type) or “sup” [RF2 variant that can 

compensate for RF1 deletion (16)]. Symbol shape specifies NSAA expression: aaRS 

(aminoacyl–tRNA synthetase) is “none” (genes for UAG reassignment were absent), “−” 

[pEVOL-pAcF (9) is present but not induced, so only the constitutive aaRS and tRNA are 

expressed], or “+” (pEVOL-pAcF is fully induced using L-arabinose), and pAcF is “−” 

(excluded) or “+” (supplemented). Strains that do not rely on RF1 are expected to have a 

RF1+/RF1− ratio at (1,1). RF1− strains exhibiting slower growth are below the horizontal 

gray line, and RF1− strains exhibiting lower maximum cell density are to the right of the 

vertical gray line. The doubling-time error bars are too small to visualize.
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Fig. 3. NSAA incorporation in GROs
(A) Western blots demonstrate that C0.B*.ΔA::S terminates at UAG in the absence of RF1 

and that C7.ΔA::S and C13.ΔA::S have acquired natural suppressors that allow strong 

NSAA-independent read-through of three UAG codons. When pAcF was omitted, one UAG 

reduced the production of full-length GFP, and three UAGs reduced production to 

undetectable levels for all strains except C7.ΔA::S and C13.ΔA::S, demonstrating that 

undesired near-cognate suppression (18) is weak for most strains even when RF1 is 

inactivated. However, all strains show efficient translation through three UAG codons when 

pAcF is incorporated. Western blots were probed with an antibody to GFP that recognizes an 

N-terminal epitope. UAA is the number of UAG→UAA mutations; RF2 is “WT” (wild type) 

or “sup” [RF2 variant that can compensate for RF1 deletion (16)]; RF1 is “WT” (wild type) 

or “S” (ΔprfA::specR). “GFP” is full-length GFP; “trunc” is truncated GFP from UAG 

termination and is enriched in the insoluble fraction; “ns” indicates a nonspecific band. (B) 

Venn diagram representing NSAA-containing peptides detected by mass spectrometry in 

C0.B*.ΔA::S when UAG was reassigned to incorporate p-acetylphenylalanine (pAcF, red) or 

phosphoserine (Sep, blue). No NSAA-containing peptides were identified in C321.ΔA::S. 

Asterisk (*) indicates coding DNA sequence possessing two tandem UAG codons. (C) 

Extracted ion chromatograms are shown for UAG suppression of the SpeG peptide to 

investigate Sep incorporation in natural proteins. Peptides containing Sep were only 

observed in C0.B*.ΔA::S, C7.ΔA::S, and C13.ΔA::S, as Sep incorporation was below the 

detection limit in EcNR2 (RF1+), and speG was recoded in C321.ΔA::S.
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Fig. 4. Bacteriophage T7 infection is attenuated in GROs lacking RF1
RF1 (prfA) status is denoted by symbol shape: (■) wt prfA (WT); (★) ΔprfA::specR 

(ΔA::S); ( ) ΔprfA::tolC (ΔA::T); and (×) a clean deletion of prfA (ΔA). (A) RF1 status 

affects plaque area (Kruskal-Wallis one-way analysis of variance, P < 0.001), but strain 

doubling time does not (Pearson correlation, P = 0.49). Plaque areas (mm2) were calculated 

with ImageJ, and means ± 95% confidence intervals are reported (n > 12 for each strain). In 

the absence of RF1, all strains except C0.B*.ΔA::S yielded significantly smaller plaques, 

indicating that the RF2 variant (16) can terminate UAG adequately to maintain T7 fitness. A 

statistical summary can be found in table S14. (B) T7 fitness (doublings/hour) (22) is 

impaired (P = 0.002) and mean lysis time (min) is increased (P < 0.0001) in C321.ΔA 

compared to C321. Significance was assessed for each metric by using an unpaired t test 

with Welch’s correction.
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Table 1

Recoded strains and their genotypes.

Strain* Essential codons changed† Total codons changed‡ Previously essential codon 
functions manipulated§

Expected (obs.) UAG 
translation function||

EcNR2 0 0 None Stop

C0.B¶ 0 0 prfB# Stop

C0.B¶.ΔA::S 0 0 prfB,# ΔprfA::specR None (stop¶)

C7 7 7 None Stop

C7.ΔA::S 7 7 ΔprfA::specR None (sup)

C13 7 13 None Stop

C13.ΔA::S 7 13 ΔprfA::specR None (sup)

C321 7 321 None Stop

C321.ΔA::S 7 321 ΔprfA::specR None (nc)

C321.ΔA::T 7 321 ΔprfA::tolC None (nc)

C321.ΔA 7 321 ΔprfA None (nc)

*
All strains are based on EcNR2 {E. coli MG1655 Δ(ybhB-bioAB)::[λcI857 N(cro-ea59)::tetR-bla] ΔmutS::cat}, which is mismatch repair 

deficient (ΔmutS) to achieve high-frequency allelic replacement; C0 and C321 strains are ΔmutS::zeoR; C7 and C13 strains are ΔmutS::tolC; C7, 
C13, and C321 strains have the endogenous tolC deleted, making it available for use as a selectable marker. Spectinomycin resistance (S) or tolC 
(T) were used to delete prfA (A). Bacterial genetic nomenclature describing these strains includes:: (insertion) and Δ (deletion).

†
Out of a total of 7.

‡
Out of a total of 321.

§
prfA encodes RF1, terminating UAG and UAA; prfB encodes RF2, terminating UGA and UAA; prfB# is an RF2 variant (T246A, A293E, and 

removed frameshift) exhibiting enhanced UAA termination (16) and weak UAG termination (17).

||
Observed translation function: Stop, expected UAG termination; stop¶, weak UAG termination from RF2 variant; sup, strong selection for UAG 

suppressor mutations; nc, weak near-cognate suppression (i.e., reduced expression compared to C7.ΔA::S and C13.ΔA::S) in the absence of all 
other UAG translation function.
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