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ABSTRACT: DNAplotlib (www.dnaplotlib.org) is a compu-
tational toolkit for the programmable visualization of highly
customizable, standards-compliant genetic designs. Functions
are provided to aid with both visualization tasks and to extract
and overlay associated experimental data. High-quality out-
put is produced in the form of vector-based PDFs, rasterized
images, and animated movies. All aspects of the rendering pro-
cess can be easily customized or extended by the user to cover
new forms of genetic part or regulation. DNAplotlib supports improved communication of genetic design information and offers
new avenues for static, interactive and dynamic visualizations that map and explore the links between the structure and function
of genetic parts, devices and systems; including metabolic pathways and genetic circuits. DNAplotlib is cross-platform software
developed using Python.
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Engineering disciplines rely on standardized pictorial repre-
sentations of parts and their interconnections to create

schematics that clearly communicate how they are pieced
together and to enable the reliable construction of large com-
plex systems. In bioengineering, DNA sequences are often syn-
thesized to create genetic constructs that probe or perturb
the natural function of a cell or implement novel capabilities.
Unlike more established engineering disciplines, the way that
a genetic design is visually represented can vary significantly
between laboratories and across different areas of the field. This
leads to ambiguities that hinder data exchange, understanding,
and the effective reuse of this research.
The Synthetic Biology Open Language Visual1 (SBOLv)

initiative was started to help alleviate this problem, defining a
set of agreed symbols for commonly used genetic elements. In
addition, other schemes such as the Systems Biology Graphical
Notation2 (SBGN) have been developed to more broadly stan-
dardize the graphical notation used to describe biological pro-
cesses. The importance of these standardized approaches has also
been recognized by publishers, with a major synthetic biology
journal (ACS Synthetic Biology) adopting the use of SBOLv
symbols when presenting genetic design information.3

Although these initiatives will help accelerate adoption of
these standards, they rely on the availability of supporting tools
to enable the production of compliant diagrams. Some tools do

exist to generate SBOLv visualizations from genetic design
information, either through graphical point-and-click interfaces
(e.g., VectorNTI,4 TinkerCell,5 GenoCAD,6 DeviceEditor7 and
SBOL Designer) or text-based inputs (e.g., Pigeon8 and
VisBOL9). These are effective for small numbers of constructs,
but lack the ability to easily process large design libraries, are
difficult to integrate into existing analyses, and offer only
limited customization of the visualizations produced. An ability
to tune how each genetic element is displayed (e.g., the size,
shape and color) based on its characterized performance10

would enable clearer communication of key design features and
enable an effective comparison of multiple designs. No tools
currently support this capability.
To address these limitations, we developed DNAplotlib, a

computational toolkit that enables the highly customizable
visualization of standardized genetic designs in a programmable
way (Figure 1). DNAplotlib is written in the Python program-
ming language and makes extensive use of the matplotlib11

graphics library to produce high-quality output in the form
of vector-based PDFs, rasterized images and animated movies
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(Figure 2; Movie S1). Python was chosen due to its broad and
growing use in the analysis of biological data, its ability to
effectively “glue” together many different computational tools
to create complex workflows,12,13 and for being highly portable
across all major operating systems. To simplify the process of
generating visualizations in code, numerous helper functions
are included to load genetic design information from files in
the Synthetic Biology Open Language (SBOL),14,15 General
Feature Format (GFF), and Comma Separated Values (CSV)
formats (Supporting Information). The full set of SBOLv parts1

are available (Figure 1B) and users can easily extend existing
functionality to cover new types of part or regulation and apply
their own visual annotations at precise points within a genetic
construct (Figures 2 and 3). Built-in parts also offer a broad
range of customization options, enabling the visual communi-
cation of other characteristics such as measured performance
(e.g., promoter or terminator strength) that go beyond the part
type alone (Figure 1C).
At the core of DNAplotlib is the main rendering pipeline

(Figure 4A). This is implemented within the DNARenderer
object and executed using the renderDNA(...) function. To
tailor the rendering of each type of part or regulation arc,
rendering functions are provided to the DNARenderer as
dictionaries (part_renderers and reg_renderers in Figure 2A)
with the part or regulation type mapping to the associated
rendering function. Standard built-in functions can be chosen
that cover the full range of SBOLv parts (Figure 1B; Supporting
Information), or the user can specify their own, which may
include new types of part or regulation not currently available
(e.g., recombinases, see Figure 3). To create a visualization,
designs are provided in the form of a list where each element is
a dictionary defining the part at that position in the design as
well as other design information such as orientation, length and
styling options. The use of a dictionary data type to store this
information allows for varying numbers and types of option
to be easily accommodated. Visualizations are automatically
generated by scanning this list and, for each element, calling the

associated function for the part type encountered. If an unrec-
ognized part type or attribute is met, this element is ignored to
ensure that multiple rendering functions with differing levels of
functionality do not break the entire pipeline. Regulation is
handled in a similar way with start and end points provided, in
addition to styling options. Regulation links are automatically
routed to minimize overlapping regions. All rendering is per-
formed using a matplotlib axis object, which enables genetic
designs to be directly incorporated into existing plotting routines
(e.g., bar charts and scatter plots, see Figure 2).
All built-in part and regulation renderers can be customized

through the use of predefined options (Figures 4B and 5). To
customize part appearance, a dictionary called opts is added to
the specific part or regulation element that needs customizing.
The opts dictionary defines a mapping between a customization
option and the value it should take. These options are auto-
matically sent to the relevant rendering function by the
DNARenderer object when the part or regulation arc is drawn.
Options not used by the renderer are ignored. A full table of all
options, their format, and the elements that are compatible are
shown in Figure 5.
The programmable nature of DNAplotlib opens up many

unique capabilities not possible with other tools. For example,
genetic circuits are composed of many parts whose regulation
leads to numerous internal states of gene expression. Illu-
strating these and the strengths of regulation present is a
challenge as the complexity of a circuit grows. Similarly, the
construction of large variant libraries that explore a potential
genetic design space has become commonplace as DNA syn-
thesis costs have fallen and assembly methods have improved.16−19

Visualizing a large number of internal circuit states or design
variants manually is both time-consuming and error-prone.
However, a simple computer program can be written to rapidly
and accurately enumerate these, and DNAplotlib used to
automate the visualization of key design features, part attributes
and the internal regulatory links that are present (Figure 2A,B).
This is made possible by direct programmable access, which
also allows for tight integration into existing analysis workflows
with minimal effort. DNAplotlib is already used within the genetic
circuit design automation program Cello20 to visualize candidate
designs. Furthermore, the ability to automate the generation of
large numbers of visualizations containing small variations in
regulation opens up new opportunities to produce animated
visualizations that convey the dynamics of a system (Movie S1).
This is useful for genetic devices such as oscillators21 whose
output naturally varies in time, having no single steady state.
Another feature differentiating DNAplotlib is the inclusion of

“trace-based” symbols for promoters, ribosome binding sites
(RBSs), genes, terminators, and user-defined regions that goes
beyond the SBOLv standard. These symbols take inspiration
from genome browsers,22,23 aiming to display not only func-
tional information about the part type encoded at a particular
point in a design, but also to provide a physically accurate
representation of its position and extent within the DNA.
This allows for a direct comparison to experimental data
(Figure 2C) or other designs (Figure 2D) at a base pair reso-
lution. This is achieved by either extending the length of gene
and user-defined element symbols, or having filled rectangular
regions cover the backbone of the construct for the length of
a promoter, RBS or terminator, and using standard symbols
extending from these to denote the part type (see Figure 2C,D).
With sequencing seeing increased use across biology and
allowing for the collection of large amounts of data at this

Figure 1. Overview of DNAplotlib. (A) Schematic of the visualization
pipeline and supporting libraries. Genetic designs are provided as
SBOL,14 GFF or CSV files, or created through direct calls to the
DNAplotlib library. Associated experimental data relating to individual
parts or entire designs (e.g., RNA-seq transcription profiles in the
BED format24) can also be provided to influence properties of the
visualization. Shaded boxes denote elements included as part of the
library. (B) DNAplotlib supports the complete set of standardized
SBOLv1 parts in both forward and reverse orientations. (C) The size,
color, shape and labeling of all genetic parts can be customized to
convey associated part information, e.g., promoter strength.
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level of detail, the demand for this capability is likely to grow.
To support the use of associated data at a base pair resolution,
DNAplotlib includes functions to load trace files in the com-
monly used Browser Extensible Data (BED) format24 (Figure 2C;
Supporting Information).
Direct access to DNAplotlib from Python gives greatest

flexibility when generating visualizations. However, in some
cases it may be simpler for nonprogrammers to specify designs
and part customizations in text-based files. These can be shared

more easily, allow for better reuse of design or styling infor-
mation among members of a lab, and support the wider adop-
tion of standardized genetic designs. For this purpose, we
provide two command-line interfaces. The first called “Quick
Plotter” (quick.py) mimics the idea of Pigeon8 and uses a
simple syntax to define basic constructs as a single line of text.
This is useful for the quick creation of small constructs with
limited customization. The second called “Library Plotter”
(plot_SBOL_designs.py) is designed for the visualization of

Figure 2. Examples of DNAplotlib visualizations. All are available from the project Web site. (A) Bar graph shows predicted output in relative
promoter units (RPUs) for a hypothetical repressor-based XNOR genetic device designed by Cello.20 The corresponding construct and expected
state of all promoters and genes for each combination of inputs is shown to the right. Input promoters are active if black and labeled, repressible
promoters are active if strongly colored, and genes are expressed if filled. Regulatory links that are present for a given set of inputs are included.
(B) Selection of refactored nif USVWZM gene cluster designs.25 Bar graphs represent the relative activity of the encoded synthetic nitrogen fixation
pathway with error bars showing ±1 standard deviation. Numbers correspond to the variant number in the original study. In the genetic designs,
promoter and RBS strengths are shown ranging from strong (black) to weak (light gray), spacer elements are blue and cloning scars are red.
(C) Zoomed section of variant 75 from the nif USVWZM library25 drawn using trace-based renderers to enable direct comparison of nucleotide data.
Three data tracks are show: strand-specific RNA-seq read depths,25 scores from an RBS prediction software, and GC percentage for a 50 bp centered
moving window. Data for the nif S region has been highlighted. (D) Homology analysis of a CRISPRi circuit implementing a 2-input, 1-output AND
gate.26 The promoters pTet and pTac act as inputs and the g2 guide-RNA is the output. The same construct is plotted vertically and horizontally
using trace-based renderers. Heat map shows the internal homology present ignoring homology that would be present between identical positions in
each copy of the circuit. Highlighted regions show that part reuse and similarity of several regions within the guide-RNA sequences leads to potential
hot-spots for recombination.
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large design libraries. Users are required to provide several text
files defining their set of parts, styling information, and the
library of designs (e.g., part ordering, orientation and regulatory
links). These are then processed and a visualization of the full
library of designs generated and saved to file.
There are also several broader functions that DNAplotlib

supports. First, the visualization of genetic designs at present is
a predominately manual process. Illustration tools are
commonly used to draw the individual components and these
are then added to existing plots of underlying data to create a
final diagram. Errors in the design are time-consuming to fix
and similar forms of diagram cannot be easily generated
by others. While the development of a visualization using
DNAplotlib might initially take a comparable amount of time,
once a script is produced, it can immediately act as a template
for others. For example, the novel plot shown in Figure 2D,
which displays a comparison of the homology present within

a genetic circuit, could immediately be used by others with
minimal change, greatly simplifying the distribution of useful
visual analyzes. Second, the maintenance of standards-com-
pliant designs over time can be a challenge as standards often
change and evolve with their field. Because DNAplotlib inter-
nally captures the visual standard, existing scripts merely need
to be rerun to generate up-to-date diagrams. This provides a
powerful means of ensuring the long-term applicability and
relevance of visualizations developed.
DNAplotlib is released as open-source software. The project

welcomes contributions from others within the community
and all source code and a gallery of examples is available at the
project Web site (www.dnaplotlib.org).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssynbio.6b00252.

Figure 3. Extending functionality to cover new types of genetic part and
regulation. Recombinase sites do not form part of the current SBOLv
standard. Even so, they can be easily incorporated into DNAplotlib plots
by providing custom renderers for these specific elements. (A) Array of
recombinase sites implementing a 64-bit genetic memory device.27 Current
binary state is shown below each pair of recombination sites. Arrows
indicate manipulations of the array at each step by integrases associated
with each pair of recombination sites. (B) Illustration of a reversible
recombinase NOT-gate device. In these examples, regulation arcs are
used to indicate the flipping of DNA between the recombinase sites.

Figure 4. Data structures controlling the visualization of a genetic design.
(A) DNAplotlib provides the DNARenderer object that takes design and
regulatory information (parts and regs) with associated rendering
functions for each element (part_renderers and reg_renderers), and then
coordinates the creation of a visualization through the renderDNA(...)
function. Dotted lines denote optional elements and chevrons denote
part objects. All rendering is performed using a matplotlib axis to allow
for the easy incorporation of other standard plotting routines. (B) The
opts dictionary can be included with any part or regulatory definition to
tailor the styling of the component (see Figure 5 for a full list of options).
Options are shown for the coding region parts.

Figure 5. Customization options supported by each part and regulation type. (A) Options for all part types covering both SBOLv and trace part
renderers. Black squares denote a supported option. For options with a color format, values are given as fractions of 1.0 for red, green and blue
components. (B) Options for all regulation renderers.
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Movie S1: Repressilator dynamics (MOV)
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